35% is short for $\frac{35}{100}$. To find 35% of 27, Sadie finds $\frac{35}{100}$ of 27.

Step 1: She multiplies 27 by 35.

2	3	
	2	7
×	3	5
1	3	5
8	1	0
9	4	5

Step 2: She divides the result by 100.

$$945 \div 100 = 9.45$$

So 35% of 27 is 9.45.

- 1. Find the percent using Sadie's method.
 - a) 25% of 44

Step 1:

Step 2: ÷ 100 = ____

So _____ of ____ is _____.

b) 18% of 92

Step 1:

Step 2: ____ ÷ 100 = ____

So _____ of ____ is ____.

- 2. Find the percent using Sadie's method.
 - a) 23% of 23
- b) 15% of 26
- c) 26% of 15
- d) 64% of 58

- e) 58% of 64
- f) 50% of 81
- g) 81% of 50
- h) 92% of 11
- 3. a) Find 35% of 40 in two ways. Do you get the same answer both ways?
 - i) Use Sadie's method.
 - ii) Use 35% = 25% + 10%.
 - b) 35% is less than $50\% = \frac{1}{2}$. Is your answer to part a) less than half of 40?
 - c) Is 35% closer to 0 or $\frac{1}{2}$?

Was your answer to part a) closer to 0 or to half of 40? _____

Is your answer to part a) reasonable? Explain.

4. Find 30% of 50 and 50% of 30. What do you notice? Why is this the case?

NS7-72 Writing Equivalent Statements for Proportions

These are equivalent statements:

 $\frac{6}{9}$ of the circles are shaded.

 $\frac{2}{3}$ of the circles are shaded.

1. Write four equivalent statements for each picture.

4 6 are shaded

 $\frac{2}{3}$ are shaded

4 is $\frac{2}{3}$ of 6

4:6=2:3

2. For each picture, write a pair of equivalent ratios.

a) @ @ @ @ O O O 4 is $\frac{1}{2}$ of 8

 $\frac{4}{\text{part}} : \frac{8}{\text{whole}} = \underline{1} : \underline{2}$

6 is $\frac{3}{5}$ of 10

3. For each statement, write a pair of equivalent ratios and equivalent fractions.

a) 15 is $\frac{3}{4}$ of 20 $\frac{1}{1}$ is $\frac{3}{4}$ of 20 $\frac{3}{1}$ is $\frac{3}{1}$ is $\frac{3}{4}$ of 20 $\frac{3}{1}$ is $\frac{3}{4}$ is

b) 18 is $\frac{9}{10}$ of 20 $\frac{1}{10}$ is $\frac{9}{10}$ of 20 $\frac{1}{10}$ is $\frac{9}{10}$ is $\frac{9}{10}$ of 20 $\frac{9}{10$

a) 12 is
$$\frac{4}{5}$$
 of what number?

$$\frac{12}{\text{part}} : \frac{?}{\text{whole}} = \underline{4} : \underline{5}$$

$$\frac{\text{part}}{\text{whole}} \quad \frac{12}{?} = \frac{4}{5}$$

$$\frac{6}{\text{part}}$$
: $\frac{8}{\text{whole}} = \frac{?}{}$: $\frac{4}{}$

c) What is
$$\frac{3}{4}$$
 of 16?

5. For each statement, write a pair of equivalent ratios and a pair of equivalent fractions.

$$\frac{15}{\text{part}} \cdot \frac{20}{\text{whole}} = \frac{?}{?} : \frac{100}{?}$$

$$\frac{\text{part}}{\text{whole}} = \frac{15}{20} = \frac{?}{100}$$

6. Write the two pieces of information you are given and what you need to find (?). Then write an equation for the problem.

part
$$\underline{5}$$
 whole $\underline{30}$ percent $\underline{?}$ $\frac{5}{30} = \frac{?}{100}$

$$\frac{1}{?} = \frac{1}{100}$$

$$\frac{?}{100} = \frac{?}{100}$$

$$--=\frac{100}{100}$$

$$--=\frac{1}{100}$$

$$--=\frac{100}{100}$$

$$--=\frac{100}{100}$$

2