

Multiplying Integers Using Patterns

YOU WILL NEED

- a number line
- pencil crayons
- number line app (optional)

LEARNING GOAL

Model integer multiplication with number patterns.

LEARN ABOUT the Math

For 4 months, Liam's cellphone company mistakenly billed \$22 instead of \$25 for his smartphone. The company will bill Liam the extra money he owes on his next bill.

What integer shows how Liam's bank balance will change?

Example 1 Using a number pattern

I used a multiplication pattern to calculate the change.

Liam's Solution

 $(+4) \times (-3) = change$

 $(+4) \times (+3) = (+12)$

 $(+4) \times (+2) = (+8)$

 $(+4) \times (+1) = (+4)$

 $(+4) \times 0 = 0$

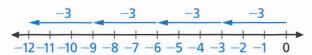
 $(+4) \times (-1) = (-4)$

 $(+4) \times (-2) = (-8)$

 $(+4) \times (-3) = (-12)$

I used +4 to represent 4 months.

I multiplied by -3 to show the extra \$3 that I owe for each month.


I know $(+4) \times (+3) = (+12)$. I used this to start a multiplication pattern.

I stopped the pattern at $(+4) \times (-3) = (-12)$.

My bank balance will change by -\$12.

Reflecting

A. How does this number line show Liam's answer is correct?

B. Why do $(+4) \times (+3)$ and $(+4) \times (-3)$ have products with opposite signs? Use the number line to explain.

WORK WITH the Math

Example 2 | Modelling a negative number of groups

Calculate $(-4) \times (+2)$ using the commutative property.

Solution

$$(-4) \times (+2) = (+2) \times (-4)$$

= $(-4) + (-4)$
= (-8)

Use the commutative property to rewrite the multiplication with a positive number of groups. Then write the repeated addition.

$$(+2) \times (-4) = (-8)$$
, so $(-4) \times (+2) = (-8)$

Communication | Tip

You can show multiplication with brackets instead of a \times symbol. For example, $(-4) \times (+5) = (-4)(+5)$.

Example 3 Multiplying 2 negative integers

Use a number pattern to calculate (-4)(-5).

Solution

$$(-4)(-5) = (20)$$

Use $4 \times 5 = 20$ to determine the number part of the product.

$$(+2)(-5) = (-10)$$

 $(+1)(-5) = (-5)$
 $(0)(-5) = (0)$

$$(0)(-5) = (0)$$

 $(-1)(-5) = (+5)$

$$(-2)(-5) = (+10)$$

$$(-3)(-5) = (+15)$$

$$(-4)(-5) = (+20)$$

Use a pattern to determine the sign of the product.

Build the pattern up and down from (0)(-5). Extend the pattern to (-4)(-5).

A Checking

- **1. a)** Write the multiplication pattern.
 - The pattern starts at $(+2) \times (+5) = (+10)$.
 - The first integer decreases by 1 each time.
 - Stop when the product is -10.
 - **b)** What pattern do you see in the products?
 - **c)** Use the product pattern to calculate $(-5) \times (+5)$.
- **2.** Calculate. Explain how you determined the sign.

a)
$$(-6) \times (+10)$$

c)
$$(-10) \times (-10)$$

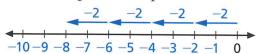
b)
$$(+8) \times (-10)$$

d)
$$(-3) \times (+10)$$

3. What sign will each product have?

B Practising

4. Calculate. Choose 1 multiplication, and explain how you calculated.


a)
$$(+6) \times (-12)$$
 c) $(-18) \times (+3)$

c)
$$(-18) \times (+3)$$

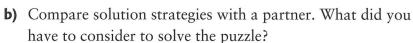
b)
$$(+21) \times (-4)$$
 d) $(-3) \times (-15)$

d)
$$(-3) \times (-15)$$

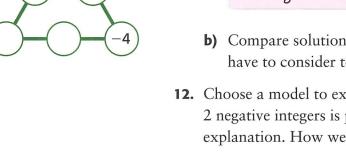
5. a) Write the multiplication equation for the number line.

- **b)** Use the commutative property to write a different multiplication equation with the same product.
- **6.** Fiona withdraws \$25 from her bank account 8 times.
 - a) Write an integer multiplication equation for this situation.
 - **b)** Explain how you decided what sign to use for the product.

(+_) x (+_) (-_) x (+_) (+_) x (-_) (-_) x (-_)


7. Bernice and Max chose signs for these 2 integers and multiplied the integers. Bernice's product was greater than Max's product. What signs could Bernice have used? Explain.


- **8.** 2 integers have a product of +8. What could the integers be? Write all the possibilities.
- **9. a)** When you multiply an integer by +1, what is the result?
 - **b)** When you multiply an integer by -1, what is the result?
 - c) Predict the sign of each product. How did you predict?


$$(-30) \times (+50)$$
 $(+30) \times (-50)$ $(-30) \times (-50)$

- **10.** The position of an elevator changes by -4 m for every floor it goes down. What integer describes each drop?
 - a) down 0 floors
- c) down 11 floors
- **b)** down 6 floors
- d) down 15 floors
- 11. a) Solve this puzzle.

The product of the 3 integers on each side of this triangle is -24. Each circle has a different integer.

Multiplying Integers (A)

Find each product.

$(-6) \times 0 =$	$7 \times 3 =$	$6 \times (-10) =$	$(-3)\times(-5)=$
$8 \times (-2) =$	$(-4) \times (-10) =$	$10 \times (-3) =$	$3 \times 5 =$
$9 \times (-4) =$	$10 \times 4 =$	$10 \times (-4) =$	$5 \times 9 =$
$0 \times (-10) =$	$11 \times 11 =$	$2 \times 3 =$	$(-4) \times (-12) =$
$(-4) \times (-6) =$	$(-10) \times (-2) =$	$3 \times 12 =$	$4 \times 7 =$
$2 \times 4 =$	$3 \times (-3) =$	$(-12) \times (-12) =$	$(-9) \times 5 =$
$9 \times (-7) =$	$9 \times 8 =$	$(-1) \times 10 =$	$(-1) \times (-2) =$
$4 \times (-12) =$	$(-6) \times (-5) =$	$10 \times (-1) =$	$(-7) \times (-9) =$
$7 \times 4 =$	$6 \times (-5) =$	$9 \times (-12) =$	$8 \times 1 =$
$(-2) \times 1 =$	$(-11) \times 2 =$	$12 \times 3 =$	$(-4) \times 3 =$
$7 \times (-8) =$	$11 \times 2 =$	$7 \times 11 =$	$(-9) \times (-12) =$
$(-12) \times 7 =$	$4 \times 10 =$	$8 \times 5 =$	$0 \times 3 =$
$11 \times 7 =$	$1 \times (-6) =$	$(-11) \times 4 =$	$0 \times (-6) =$
$11 \times (-9) =$	$4 \times (-2) =$	$2 \times (-11) =$	$(-5) \times 12 =$
$(-3) \times 1 =$	$(-1) \times 11 =$	$7 \times (-10) =$	$(-7) \times (-3) =$
$(-11) \times (-11) =$	$8 \times 4 =$	$(-3) \times 12 =$	$(-10) \times (-6) =$
$2 \times 7 =$	$(-5) \times 10 =$	$(-7) \times 5 =$	$(-2) \times 2 =$
$6 \times (-4) =$	$10 \times (-11) =$	$(-4) \times (-3) =$	$(-8) \times (-2) =$
$2 \times 12 =$	$(-4) \times 1 =$	$(-4) \times 7 =$	$(-1) \times 5 =$
$4 \times (-8) =$	$(-2) \times (-11) =$	$(-10) \times 7 =$	$(-8) \times 9 =$
$(-1) \times 2 =$	$(-9) \times (-8) =$	$1 \times 5 =$	$(-6) \times 12 =$
$(-10) \times (-4) =$	$(-11) \times (-10) =$	$1 \times (-12) =$	$3 \times (-7) =$
$(-3) \times (-4) =$	$8 \times 12 =$	$2 \times (-8) =$	$0 \times 8 =$
$5 \times (-7) =$	$0 \times 11 =$	$(-10) \times 10 =$	$(-8) \times 0 =$
$4 \times (-7) =$	$11 \times 1 =$	$(-3) \times 8 =$	$(-2) \times (-10) =$