
Lesson M

Dividing Integers Using Patterns

YOU WILL NEED

- a number line
- pencil crayons
- number line app (optional)

LEARNING GOAL

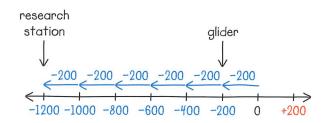
Model integer division with number patterns.

LEARN ABOUT the Math

The depth of an underwater research station in Clayoquot Sound is -1200 m. This is 6 times as deep as an undersea glider that is collecting data about whales nearby.

What integer shows the depth of the glider?

research station


Example 1

Using a number line

Use repeated addition on a number line to model the depth.

Nestor's Solution

$$(-1200) \div (+6) = (-200)$$

-1200 is 6 times as deep as the glider.

I divided -1200 m by +6 to get the depth of the glider.

 $1200 \div 6 = 200$, so the depth is either +200 m or -200 m.

I drew a number line and put the research station at -1200.

I started at 0 and thought about what I would add 6 times to get to -1200.

I would add -200, not +200, so the sign of the quotient is negative.

 $(+6) \times (-200) = (-1200)$, so $(-1200) \div (+6) = (-200)$. The depth of the glider is -200 m.

Example 2 Using a pattern

Use a multiplication pattern to determine the depth.

Megan's Solution

$$(-1200) \div (+6) = (-200)$$

$$(+200) \times (+6) = (+1200)$$

$$(+2) \times (+6) = (+12)$$

$$(+1) \times (+6) = (+6)$$

$$0 \times (+6) = 0$$

$$(-1) \times (+6) = (-6)$$

$$(-2) \times (+6) = (-12)$$

$$(-200) \times (+6) = (-1200)$$

The depth of the glider is -200 m.

 $1200 \div 6 = 200$, so the depth of the glider is either +200 m or -200 m.

I chose -200 m because the glider is below sea level at 0 m.

I know glider depth \times 6 = station depth.

I used a multiplication pattern to check that the quotient is negative. I built a \times (+6) pattern up and down from 0 m.

I could see that the depth of the station would be at -1200 m when the depth of the glider was -200 m.

Reflecting

- **A.** How did thinking about multiplication help each student divide?
- **B.** How does Megan's pattern explain why the quotients for $(+1200) \div (+6)$ and $(-1200) \div (+6)$ have opposite signs?

WORK WITH the Math

Example 3

Dividing integers with different signs

Calculate $(+24) \div (-8)$.

Solution

quotient × divisor = dividend

I know you can multiply the quotient by the divisor to get the dividend.

$$0 \times (-8) = 0$$

THINK GD

Think about what to multiply (-8) by to get (+24).

$$(-1) \times (-8) = (+8)$$

$$(-2) \times (-8) = (+16)$$

$$(-3) \times (-8) = (+24)$$

$$(+24) \div (-8) = (-3)$$

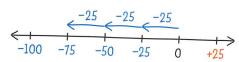
Build a pattern from $0 \times (-8)$. Extend the pattern until the product is (+24).

Rewrite the multiplication as dividend \div divisor = quotient.

Example 4

Dividing 2 negative integers

Calculate $(-75) \div (-25)$.


Solution

 $(+_) \div (+_)$

(-_) ÷ (+_) (+_) ÷ (-_)

 $(-) \div (-)$

$$(-75) \div (-25) = (-3)$$

Use 75 \div 25 to determine the number part of the quotient.

Use a number line to show $(-75) \div (-25)$. Start at 0 and add -25 each time until you get to -75.

Since -25 was added 3 times,

$$(-75) \div (-25) = (+3).$$

A Checking

1. Calculate. How did you determine the sign of the quotient?

a)
$$(-48) \div (+8)$$

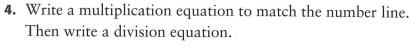
c)
$$(+54) \div (-6)$$

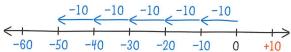
b)
$$(-28) \div (-2)$$

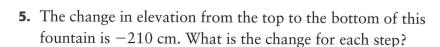
d)
$$0 \div (-5)$$

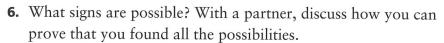
- **2. a)** What sign will each quotient have? Give an example.
 - **b)** How can comparing the signs of the integers you are dividing help you choose the correct sign for the quotient?

B Practising

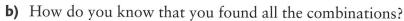

3. Calculate. Choose 1 division, and explain how you calculated.


a)
$$(+14) \div (-2)$$

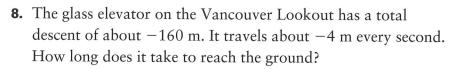

c)
$$(-27) \div (+9)$$

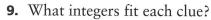

b)
$$(-16) \div (+8)$$

d)
$$(-18) \div (-3)$$

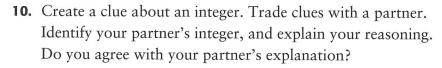

a)
$$(-36) \div (-3) = (-12)$$

c)
$$(42) \div (-7) = (6)$$

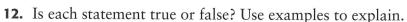

b)
$$(81) \div (9) = (+9)$$


d)
$$(+23) \div (-1) = (-23)$$

7. a) What are all the ways to complete
$$(-12) \div \blacksquare = \blacksquare$$
 with integers?



c) Does
$$+12$$
 have the same number of combinations? Discuss your answer with a partner. Make a list to check.



- a) I am a multiple of +4 and -5. I am a positive integer.
- **b)** I am a factor of -10. I am also a multiple of +2. I am a negative integer.

11. How would you answer Ashley's question? Compare answers with a partner.

- **a)** When integers have the same sign, their quotient is positive.
- **b)** The quotient of 2 integers can equal the dividend.
- **c)** The dividend is always greater than the divisor and quotient.
- **d)** The dividend always equals *quotient* \times *divisor*.

Ashley's question: 6 ÷ 2 can mean subtracting 2 from 6 over and over. Does integer division work the same way?